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A theoretical model including the effect of plasticity of the coating material on the 
single-fibre pull-out test has been developed. Both hardening and perfectly plastic coatings 
were modelled and the calculations have provided much information on the debond and 
maximum pull-out stresses. For both SiC fibre-glass and carbon f ibre-epoxy systems, a stiff 
coating reduces substantially the partial debonding stress, but a soft coating increases it 
markedly. Although a higher coating yield stress increases the partial debonding stress 
slightly, the maximum pull-out stress is independent of the coating. 

1. Introduction 
Fibre coatings dominate the mechanical behaviour of 
fibre-reinforced composites. Recently, the effects of 
interfacial conditions on toughness and energy dissi- 
pation have been addressed by a number of investiga- 
tors [1-6]. It is noted that to obtain optimum mech- 
anical, chemical and physical properties, fibres need to 
be coated. Fibre coatings may be used to control the 
bond strength between fibre and matrix, permitting 
interface debonding and fibre pull-out to occur, thus 
enhancing the total fracture toughness of the com- 
posite. Also, they are used to improve the fibre resist- 
ance to oxidation and/or prevent chemical reaction 
between fibre and matrix. These are the thermome- 
chanical roles of fibre coatings. 

Di'anselmo et al. [7] have used finite element analy- 
sis to compare the effects of the interphase with differ- 
ent moduli and thicknesses on local stresses and en- 
ergy distribution for a model E-glass fibre-epoxy 
matrix composite. It is concluded that the moduli and 
thicknesses of the interphase have a strong effect on 
the stress and energy distribution and the softer inter- 
phase has a lower energy release rate. The analysis 
performed is linear, and does not include friction or 
residual clamping stress. To model interface debon- 
ding and matrix cracks, for simplicity, the elements 
corresponding to the crack region are deleted. In their 
recent work on an E-glass fibre embedded in a polyes- 
ter matrix with a silane coating (soft interphase) and 
without coating, Connelly et al. [8] found that, with- 
out the soft interphase, failure occurs by crack propa- 
gation into the matrix. But with a soft interphase, 

interracial debonding occurs initially, followed by 
crack propagation into the matrix at the fibre break. 

Sottos et al. [9] have carried out an experimental 
study and performed theoretical evaluation of the influ- 
ence of the interphase on local thermal displacements. 
A thermal displacement solution is derived for a three- 
phase, finite composite cylinder model using a displace- 
ment potential approach, with perfect bond condition. 
Their model does not consider the residual stress which 
develops as a result of the fabrication process. 

Mital and Chamis [-10] have conducted a simula- 
tion of the single-fibre push-out process using a three- 
dimensional finite element method. The interphase 
material is replaced by an anisotropic material with 
a greatly reduced shear modulus, the fibre pushout 
load at any temperature (corresponding to different 
interphases) are calculated. In their model, the thick- 
ness and properties of the interphases have not been 
included. 

Observations have indicated that coatings can be 
classified into four groups I-2]: (a) ductile coatings that 
do not debond; (b) ductile coatings that debond; (c) 
brittle coatings that debond at one interface; and (d) 
brittle coatings that debond within the coating. Some 
results obtained for three ductile- and brittle-bonded 
systems have provided some useful information on the 
role of plasticity of the coating material. For example, 
plastic deformation of metal coatings undoubtedly 
provides a contribution to the fracture energy for the 
metal-ceramic system. However, adequate mechanics 
models have yet to be developed which can properly 
account for the plasticity of the metal coatings. 
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In this paper, both the plastic hardening coating 
and the perfectly plastic coating are considered. A the- 
oretical model including the effect of plasticity in the 
coating for the single-fibre pull-out test is developed 
and evaluations of the interface debond and maximum 
pull-out stresses are given for coatings with different 
elastic moduli, yield stresses and thicknesses. SiC 
fibre-glass matrix and carbon fibre-epoxy matrix 
composites are used to demonstrate the effects of these 
plastic coatings. 

2. Debonding 
2.1. Fundamental equations 
We consider, for simplicity, the single-fibre pull-out 
test in which a debonded region has extended along 
the fibre-coating interface (see Fig. 1). It is assumed 
that interfacial crack propagation induces plastic de- 
formation in the coating of the debonded region but 
any plasticity at the debond crack tip is ignored. 
Frictional shear and radial clamping stresses are con- 
sidered to exist at this debonded interface. Also there 
is a perfect interface bond between the coating and the 
matrix. 

As shown in Fig. 1, the shear-lag model consists of 
a rod (fibre) with radius a, a cylindrical shell (coating) 
with thickness t and a cylindrical shell (matrix) with 
outer radius b, which can be determined from the fibre 
radius and fibre volume fraction. The fibre is located 
at the centre of the coaxial cylindrical shells. The 
z-direction is parallel to the fibre axis and the load, P, 
is applied at the fibre end (z = 0). L is the fibre embed- 
ded length and at its remote end (z = L), it is fixed. The 
coating thickness, t, is uniform along the fibre; l is the 
debond length, which conveniently divides the coating 
into two regions, elastic region (bonded region) and 
plastic region (debonded region). 

In the debonded region, the equilibrium equations 
are given by 

d00f 2 
- ~ f  ( 1 )  

dz a 

d001 2 
dz = (a + t) 2 - a 2 [a 'c f -  (a + 0%]  (2) 

doom 2 
= - z o  ( 3 )  

dz a 

( 3 "  a = 00fCf --}- 001C 1 -~ 00mCm (4) 

where 00f, 00~ and 00m represent the average values of 
the axial stresses in the fibre, coating and matrix, 
respectively. 00a(= PCf/Tr, a a) is the applied composite 
stress, P is the load exerted at the fibre end, Cf, C~ and 
Cm are the volume fractions of the fibre, coating and 
matrix, respectively. "co is the shear stress at the coat- 
ing-matrix interface. The frictional shear stress be- 
tween the fibre and coating, zf, is assumed constant 
along the debond length and is given by 

"of = [xq0 (5) 

in which g is the coefficient of friction and qo is the 
initial residual stress caused by the mismatch of ther- 
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Figure 1 Schematic diagram of the fibre coating-matrix system. 

mal expansion coefficients between the fibre and the 
coating. 
The stress-strain relationships are given by Hooke's 
law 

duf 00f 
dz Ef (6) 

dUl dum 
dz dz 

(7) 

dum 00rn 
- -  = - -  ( 8 )  
d z  E m 

where uf, ul and Um are the displacements in the fibre, 
coating and matrix, respectively. The boundary condi- 
tions are 

00f(0) = P / n a  2 (9) 

00,(0) = o (lO) 

00m(0)=0 (ii) 

2.2. Plastic stresses and deformations 
in coating 

To simplify the problem, three assumptions are made 
concerning the coating: (1) when debonding occurs, 
the plasticity of the coating is considered only in the 
debonded region; (2) Poisson's effect is neglected; and 
(3) the shear stresses in the coating and the matrix are 
neglected. Assumption 1 is made because we do not 
know the precise stress distributions nor the plastic 
zone length at the debonded crack tip. Assumptions 
2 and 3 imply that the coating is subjected to 
one-dimensional tension. Here, two plastic constitut- 
ive models, Ramberg-Osgood and perfectly plastic 
models, are used to describe a plastic hardening coat- 
ing and a perfectly plastic coating, respectively. 

2.2. 1. Ramberg-Osgood model 

sl= I-F\~/ J m>~ 1 (12) 

where el, 001, El and 00, are, respectively, the strain and 
stress, the elastic modulus and the yield stress of the 
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coating. When (I 1 is very small Equation 12 describes 
the elastic case; and when cq is large, it approximates 
the power-hardening rule. 

2.2.2.  Perfectly plastic model 

~ = % (13) 

By this model, no plastic hardening can occur. At the 
fibre end (z = 0), oh(0-) = 0 and oh(0 +) = ors. Phys- 
ically, ch increases gradually from 0 to %. 

(b) For the perfectly plastic model 

u~(zt  = --EmC---~ \ ~ a  ~ --  C , ~ ,  ( l - - z )  

- C f I - ~ ( 1 2 - z 2 ) +  P (20) 

Both uf(z) and Um(Z) are linearly related to the external 
load, P, for a given debond length. The displacements 
in the fibre and matrix in the bonded region are equal, 
as there is no relative displacement, i.e. 

2.3. Formulations of stresses and 
deformations in the debonded region 

Integrating Equation 1 and using the boundary condi- 
tion 9, as well as Equation 4, we obtain the stresses in 
the fibre and matrix as 

2 P 
(~f = - -  -- q~fZ -~ - -  (14) a ~a 2 

P Cf 
uf(z) = Um(Z) = U,(Z) = -- rca2 E-~ (L -- z) (21a) 

where 

Ec = CfEf  -t- C1E 1 q- CmE m (21b) 

and L is the total embedded length of the fibre. There- 
fore, from Equations 17 and 21, the displacement at 
the fibre end is 

P ) 
~m = ~ Cf - ~fCf - ~,C, (15) 

The stress in the coating by the Ramberg-Osgood 
model can be evaluated from Equations 7, 8 and 12. 
For simplicity, we consider the case m = l (although 
cases m > 1 can be derived similarly). Thus, we have 

I I - B  + (B2--4C)1/21 (16a) O ' 1 ~  ~ 

where 

E1C1 
B = r r ~  1 + E - - ~ j  (16b) 

and 

E,~s 2"cfCfz 
C - (16c) 

em C m a 

Crl increases with increasing E1/Em and %. 

The stress in the coating by the perfectly plastic 
model is given by Equation 13. The displacements of 
the fibre and matrix in the debonded region are 

u f ( z )  = - ~fdz=-lF-~(l=-z2)+3(1-z) 
E f /  a 

(17) 

Um(Z ) = HI(Z ) = - -  g m d z  (18 )  

(a) For the Ramberg-Osgood model 

Urn(Z) --  

where 

E m f m  L-~a 2 (I - z) - - B ( l  - z) -~ 1 6Co 

x ( [ (4Co l+B2)3]  ~/2 --[(4Coz+B2)311/2)) 1 

(19a) 

ElCrs 2qTf Cf 
Co - - -  (19b) 

Em C m a 

U f ( 0 ) =  - - - -  
( P') PCf (L -- I) 1 _ ~ 12 q- 

rca2 Er - ~ a ~a 2 

ICf l 1 P "cfl2 . . . .  + - -  (22) (L l) + ~ff rca2 Era 

The relative displacement of the fibre to the matrix in 
the debonded region can be calculated as follows. 

(a) For the Ramberg-Osgood model 

v ( z )  = l udz )  - um(z) l 

(' +-" 1 (l 2 - z 2) (l - z) 
Ee J- EmCm . ~a 2 

E~ Cm L~a ~ ( i -  z) -- _--B(l- ~) + 6C---~ 

• 

(23) 

(b) For the perfectly plastic model 

V(Z) = [Uf(Z) - -  Urn(Z)[ 

= + - - ( I  2 - z  2) + - - ( l - z )  
a Tca 2 

PCf/~a 2 - CI~I 

EmC.~ 
(t - z) (24) 

The relative displacement at the fibre end, 5, is given 
by Equation 22 at z = 0. 

(a) For the Ramberg-Osgood model 

( P) 1 / / 1  C f  "~ "Cfl 2 + - - I  
8 = ~Eff + E ~ )  - - a  7ta 2 EmCm 

r P C f  l -- CI ( 1 
• L~a ~ S - ~z + 6c--;o 

(25) 
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(b) For the perfectly plastic model 

8 = ( ~ +  1 Cf) l) 
Emm~m//(-~/2+~Prta 2 

PCf/ga 2 --C10-1 
EmCm 

l (26) 

The derivatives of the displacement at fibre end uf(0) 
and the relative displacement of the fibre to matrix v to 
debond length l are, respectively, 

Ouf(O) (C~ l ) P" 2zf = Ef  ~ + Efa (27) 

Cl0-1 0v _ 1 P 1 1 Cf ~ 2Tf 1 + E ~  (28) 
~t Ef T~a 2 g q-Em-~m) T 

is given by Equations 16 and 13 for the Ram- 
berg-Osgood model and the perfectly plastic models, 
respectively. 

3. Debonding criterion 
Following Gao et al. [11], the progressive debonding 
process may be treated as crack propagation along the 
interface of the fibre coating, for a cracked body sub- 
jected to traction, p, acting on the boundary of surface, 
ST, and friction, zf, along surface, SF. The correspond- 
ing displacements are du and dr. For crack growth, 
dA, based on the principle of energy balance, we 
obtain 

~s pduds = gdA + fs zfdvds + dUe + dUp (29) p F 

where g is the specific work of fracture, 5s~ z~ dv ds is 
the work of friction, dU~ and dUp represent the elastic 
and plastic energy of the cracked body, respectively. 
The elastic energy of the system can be derived as 

lfs lfs lfv d U~ = ~ p duds - ~ zf dv ds - ~ P1 dUl 
p F 1 

(30) 

where P~ and u~ are the force and displacement in the 
coating. The plastic energy of the coating is 

< I. Ioid d, 
i 

Combining Equations 29-31, we obtain the fracture 
criterion 

g = ~ ~ p duds - ~ ~ zf dv ds 
p F 

1 ~ fV --'~-~fV f0-1dgldVl (3 2) 4- ~ ~aa P1 dUl 
1 1 

If there are n concentrated forces P,, ..., P~ .... , Pn 
applied on SF of the cracked body giving correspond- 
ing displacements 81,..., 8i .... ,8, Equation 32 

becomes 

llkP~O8~ fs �9 1 1 0 fv g = - Li= 1 ~ -- ~ zr ~-~ ds + ~ ~ , P1 dUl 

0A 0-1 dSl dr1 (33) 
i 

Equation 33 can be applied to the fibre debonding 
problem shown in Fig. 1. Thus, we have 9--~,  
A = 2real, ds = 2rca dz and P~ = P, 81 = uf (0), so the 
debonding criterion is given by 

P (�9 1 ~  ~v 1 i a+t "c 
= -- - -  Jo zf ~-~ dz + 0-1sl - dr 47ra\ ~l J - - 2  2J~ a 

iaWt I -- 0-1 dsa _r dr (34) da a 

The physical meaning of the first two terms is the same 
as given by Gao et al. [11], i.e. the first term on the 
right side of Equation 34 is identical to the well- 
established compliance equation, the second term is 
the friction contribution to {, the third and fourth 
terms give the contribution of the coating (debonded 
region) to {. Although the first and second terms are 
the same, they are, however, affected by the coating 
behaviour. The debond load, Pa, (debond stress 
0-a = Pa/~a2) and the initial debond load, Po (no fric- 
tion Ix = 0) are given by the following equations. In- 
serting Equations 27, 28 and 16 into 34, we obtain 

( •  ___1 A~2"cf C,0-,] 
--  "~ g m C m ]  T l Jr E - - - ~ J  (35) 

F0-~(1 2%'~ 1 l ( a + t )  2 - a  2 
LE1 \2  + 3-%%)-2 o-lsl 2a 

for partial debonding for a hardening coating. If 
g = 0, we obtain the initial debonding conditions 

~ c -  4n2a 3 ~ ~ (36) 

Similarly, with Equations 27, 28, 13 and 34, we obtain 

Pa~(Cy l ) P a  2ze ] 1 / [ 1  Pd 

[ 1 1 Cf'~ 2zf C10"1 ~ 0-1 

4a  Cm 

( 2zeCfl)E(a+t)2-aZ] (37, X C 10-1 - -  a 

for partial debonding for the perfectly plastic coating. 
Again, if Ix = 0, we obtain 

~c = p 2 ( C f  l )  Cl0- ? 
4 2a 3 - 4aemC  E(a + 02 -- a q  

(38) 
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for the initial debonding criterion. Note that when 
t < a, both types of coating give the same debond 
criterion, i.e. Equation 38 reduces to Equation 36. 
Physically, this means that the plastic energy absorp- 
tion contribution to ~ is negligible. 

4. Numerical examples and discussions 
To illustrate the usefulness of the theories presented in 
the previous two sections, we select two composite 
systems, a SiC fibre-glass matrix composite and a car- 
bon fibre-epoxy resin matrix composite, which are 
typical of ceramic- and polymer-matrix composites. 
Their material and interracial properties are given in 
Table I and are representative of these composites. 
Specifically, we intend to examine the effects of the 
coating modulus, El, relative to the fibre or matrix and 
the coating material yield stress, or,, on the partial 
debonding stress, ~sa = PJrcd 2, using Equations 35 or 
37, and the maximum frictional pull-out stress, er~, 
using Equation 14 when erf(L) = 0 and z = L. 

For  the SiC fibre-glass matrix system, in addi- 
tion to the uncoated fibre case, we consider the follow- 
ing coated fibre cases: (a) E1 = Em, % = 100 MPa; 
(b) E1 = Ef ,  ers = 100 MPa; (c) E 1 / E  m = 0.1, er~ = 
100 MPa; and (d) E1 = Era, er, = 10 MPa. The coat- 
ing thickness, t, to fibre radius, a, ratio is 0.1. These 
cases cover the bounds when the coating modulus, El, 
is equal to that of the fibre and less than that of the 
matrix. Both a large and a small yield stress are also 
considered. 

For  the carbon fibre-epoxy matrix composite, 
the uncoated fibre and four coated fibre cases are also 
considered: (a) E1 = Era, % = 10 MPa; (b) E1/Em = 10, 
or, = 100 MPa; (c) E~/Em --- 0.1, ~s = l0 MPa; and 
(d)  E 1 / E  m = 1.0, (3- s = 50  MPa. The ~/a ratio is 0.3 in 
these examples. Here we only include the situations 
when the coating modulus, El ,  is less than Ef ,  but can 
be bigger than, equal to or less than Era. 

Figs 2 and 3 show the partial debond stress as 
a function of debond length for the SiC fibre-glass 
matrix composite with a power hardening and perfect- 
ly plastic coating, respectively. Clearly, for all cases, 
the debond stress increases almost linearly with de- 
bond length. This seems to be caused by the ever- 
increasing frictional work and plastic energy dissipa- 
tion in the coating as the debond length increases, 
because the Poisson's effect is neglected. For  the same 
coating conditions, there is little difference in the de- 
bond stress for the linear hardening and non-harden- 
ing coating materials. It is also clear from these two 
figures that the debond stresses for the uncoated fibre 
and coated fibre cases (a), (c) and (d) are approxim- 
ately equal for the same debond length. However, for 
the coated fibre case (b), the debond stresses are small- 
er. These theoretical results mean that for El ~< Em and 
~, is identical, era remains constant for a given I. 
Decreasing % by 10 times does not have-much effect 
on era. But if E1 = Ef ,  i.e. a coating much harder than 
the matrix and equal to the ceramic fibre, era is re- 
duced. So, the elastic modulus, E~, of the coating is an 
important  parameter in determining the debond 
stress, era- 
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T A B L E  I Material parameters and interfaciat properties of two 
composite systems 

Material parameter/  SiC fibre-glass C fibre-epoxy 
interracial properties matrix matrix 

Fibre modulus, Ef (GPa) 400 230 
Matrix modulus, E= (GPa) 70 3 
Fibre volume fraction, C,- 0.15 0.08 
Fibre radius, a (btm) 100 3 
Interracial toughness, ~ 50 100 
(Jm -2) 
Friction coefficient, g 0.10 0.10 
Residual clamping stress, - 1 0  - 7 . 0  
q0 (MPa) 
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Figure 2 PartiaI debond stress plotted against debond length for 
SiC fibre-glass matrix composite in which the plastic coating is 
linear hardening. Coated fibre cases: (a) E1/E m = 1, ~ = 100 MPa;  
(b) E~ = El, ~ = 100 MPa;  (c) El~Era ~- 0.1, crs = 100 MPa; and 
(d) E1 = Era, ~ = 10 MPa. ( ) Uncoated, ( - - )  coated (a), 
( . . . .  ) coated (b), ( -  - - )  coated (c) ( - - . - - )  coated (d). 
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Figure 3 Partial  debond, stress plotted against debond length for an 
SiC fibre-glass matrix composite in which the plastic coating is 
non-hardening. For key, see Fig. 2. Coated fibre cases are identical 
to Fig. 2. 

Figs 4 and 5 show similar erd results for the carbon 
fibre/epoxy resin composites for the linear hardening 
and non-hardening coating, respectively. Again, sim- 
ilar conclusions can be drawn as the SiC fibre-glass 
matrix composite system. For  El ~< Era, o'd is approx- 
imately equal though the coated fibre case (c), where 
E1 = 0.1 E m shows a slightly higher value at a given 
debond length. The coating yield stress is not as 
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Figure 4 Partial debond stress plotted against debond length for 
a carbon fibre-epoxy matrix composite for a linear hardening 
plastic coating. Coated fibre cases: (a) E~ = Era, % = 10 MPa; 
(b) E1/Ee = 10, cy~ = 100 MPa; (c) E1/Ern = 0.1, % = 10 MPa; and 
(d) E1 = Era, % = 50 MPa. For key, see Fig. 2. 
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Figure 5 Partial debond stress plotted against debond length for 
a carbon fibre-epoxy matrix composite for a non-hardening plastic 
coating. Coated fibre cases are identical to Fig. 4. For key, see Fig. 2. 

important.  When E~ > Era, cYa has been reduced for 
any I. The reduction is, however, more remarkable 
than the SiC-glass composite. The linear increase in 
~a with l can be explained in the same way. 

Summarizing Figs 2-5, it appears that for a given 
interface toughness, and given thickness and yield 
stress of the coating, the debond stress increases al- 
most linearly with debond length. Increasing the 
modulus of the coating above that of the matrix has 
the net effect of decreasing the debond stress. On the 
other hand, decreasing the coating modulus slightly 
increases the debond stress. Physically, this means 
a more compliant plastic coating with a higher yield 
stress is required to control interracial debonding. It 
would therefore seem that a thick coating is more 
effective than a thin coating to increase the debond 
stress. However, the effect of the coating thickness has 
not been studied yet in this work. 

The maximum frictional pull-out-stress, % ,  as 
a function of embedded fibre length, L, is given in Figs 
6 and 7 for the two types of composites. The linear 
hardening or non-hardening nature of the coating 
material is unimportant,  And according to Equation 
14 with ~ f ( L ) =  0 and z = L, it is expected that cyp 
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E ~ 0.2 
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0 
0 5 10 15 20 25 30 35 40 

Embedded length ( mm ) 

Figure 6 Maximum frictional pull-out stress plotted against fibre 
embedded length for the SiC fibre-glass matrix composites. Results 
are identical for linear hardening and non-hardening coatings and 
all cases studied in Figs 2 and 3. 
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Figure 7 Maximum frictional pull-out stress plotted against fibre 
embedded length for the carbon fibre-epoxy matrix composites. 
Results are the same for linear hardening and non-hardening 
coatings and all cases studied in Figs 4 and 5. 

depends linearly on L and re(= gq0)- No properties of 
the fibre coating come into the equation. Again this 
result is expected, and is because we have not con- 
sidered the Poisson's effect on stretching the fibre. 
Hence, the coating will not affect the maximum fric- 
tional pull-out stress. 

5.  C o n c l u s i o n  

A theoretical model is presented for the interfacial 
debonding and frictional pull-out of a single elastic 
fibre which is coated with a plastic coating from an 
elastic matrix. A new debond criterion has also been 
established for a linear hardening and a non-harden- 
ing plastic coating. Parametric  studies on two com- 
posite systems, a SiC fibre-glass matrix composite and 
a carbon fibre-epoxy matrix composite, show that 
increasing the yield stress and decreasing the elastic 
modulus of the coating improve the debond stress at 
any debond length. The maximum frictional pull-out 
stress is dependent linearly on fibre embedded length 
but independent of the coating properties. The ana- 
lytic solutions provided in this paper are exact and 
correct for the assumptions made in Section 2.2. Also, 
because Poisson's effects are neglected in the analysis, 
the solutions apply equally to fibre push-out. 
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